
International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 71
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Parallelizing Incremental Grid Density Clustering
Algorithm for Real-time Network Anomaly

Detection
Jagatheesan Kunasaikaran, Roslan Ismail, Abdul Rahim Ahmad

Abstract— Cyberattacks are a growing threat to the internet. These cyberattacks are targeted to exploit the vulnerabilities in a network.
Often, the intention of such cyberattacks is malicious. The growing number of devices that are connected to the Internet also increases the
vulnerability of such devices to cyberattacks. Cyberattacks will usually exhibit anomalous characteristics in a network traffic flow. These
anomalies could be identified in real-time and investigated further to minimize the impact of cyberattacks. Many researchers today use a
wide array of tools to detect cyberattacks in real-time which comes with a high complexity cost in terms of the system architecture and
maintenance. In this research, a simple method of parallelizing the incremental grid density clustering algorithm used to detect the anomalies
is implemented and studied. The simplified approach used in this research is practical to be used in a real-life environment.

Index Terms— clustering, cybersecurity, machine learning, network anomaly detection, real-time

——————————  ——————————

1 INTRODUCTION
N today's world, devices are being connected to large net-
works at an accelerating pace. By 2021, it is expected that 28
billion devices will be connected to the network, predomi-

nantly, the Internet [1].
A report produces by Symantec Security says that malware is
being prompted in approximately 8 percent of gadgets con-
nected to the Internet [2]. Also, a huge jump of 54 percent in the
variety of malware targeting mobile gadgets with an almost
equal increase of 46 percent in the type of ransomware are being
widely seen today. The explosive growth of devices connected
to the Internet in developing regions such as Africa and Asia
where the growth of the number of such devices has been
recorded as 9941 percent, and 1670 percent from 2000 to 2018
respectively [3] shows the huge potential for vulnerability ex-
posed to malicious cybercriminals.
Hence, implementing a system capable of detecting network in-
trusion in real-time which is easily deployable and scalable is
an important challenge to be solved as non-real time network
intrusion detection reduces the possibility of taking security
measures to defend a system promptly and has a lower chance
of detecting novel attacks. In this research, upon studying, a
crucial part of the network intrusion detection system which is
the network anomaly detection module is enhanced. The en-
hancement is focused on improving the performance of the
clustering algorithm used to detect anomalies.
This paper is divided into six main sections, a discussion on re-
lated works, a brief overview of clustering algorithms, a brief
discussion on the Go programming language focusing on it’s
concurrency features, the implementation of the experiment, a

discussion on the results obtained and finally, conclusions and
future direction to continue to work done in this research.

2 RELATED WORK
The authors of [4] have proposed to use Apache Hadoop [5],
Hive [6] and Apache Spark [7] to process the network flow data
in real-time. Apache Hadoop is used to store the network pack-
ets in a Hive table that is accessible by Apache Spark for real-
time processing of the features. The implementation of the re-
searchers can process a large amount of network flow data to
detect anomalies in a short span of time as the computation was
distributed among a cluster of Spark processes. On the flip side,
fine-tuning configuration settings for Hadoop is highly chal-
lenging [8]. Apache Spark also comes with own set of chal-
lenges when especially on the ease of debugging [9].
In [10], the authors have used a combination of the CluStream
[11] clustering algorithm and a decision tree to detect anoma-
lies. CluStream is used to cluster the training data into anomaly
or non-anomaly. Then, the clusters formed are used to create a
decision tree. The features of the data that streams into the sys-
tem is reduced by using an online feature selection method
which in turns reduces the time to detect the anomalies. The
system also has a high precision rate. However, the data set
used, KDD99, is known for its limitation regarding a high num-
ber of redundant and different level of difficulties in the distri-
bution of the dataset [12]. Besides, the authors have not tested
the system using the whole KDD99 dataset.
Besides that, in [13], the authors has proposed a multi-stage
anomaly detection system. The system is divided into two en-
gines. Whenever the first engine detects a DDOS attack, the sec-
ond engine proceeds to find the potential Bot-Master. Dividing
the processing of detection using in a multi-stage process de-
creases the computation resource needed. The ensuing work
[14] from this research paper though did not state the computa-
tional performance of the system in detail.

I

————————————————
• Jagatheesan Kunasaikaran is currently pursuing masters degree program in

information technology in Universiti Tenaga Nasional.
E-mail: st22489@utn.edu.my

• Roslan Ismail is an associate professor in Universiti Tenaga Nasional. His
area of interest is in software testing and cybersecurity.
E-mail: Roslan@uniten.edu.my

• Abdul Rahim Ahmad is an assocate professor in Universiti Tenaga Na-
sional. His area of interest is in networking and machine learning.
Email: Abdrahim@uniten.edu.my

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 72
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

A two-stage NIDS whereby the first stage is to form a rule set
using unsupervised learning methods and the second stage of
classifying network traffic in an online manner using the rule
set forms is done in [15]. The first stage of form rules uses k-
means clustering. The proposed method has its advantage as it
eliminates the need to have a labeled training dataset. The
downside of this method is that the rule set needs to be re-
formed to detect novel attacks.
Focusing on the perspective of performance of the proposed
system, the approach suggested in [16] to identify anomalies by
clustering over sub-spaces using an incremental grid clustering
algorithm is well suited to a real-time setting as the algorithm
can include streaming network traffic to update the clusters.
The use of sub-spaces also further decrements the size of the
feature space that needs to be clustered. However, clustering
over the sub-spaces is done in a sequential manner whereby a
loop is running to cluster each of the sub-spaces. The result of
clustering all the sub-spaces is then accumulated to identify
anomalies. To improve the performance of the clustering, the
process of clustering over all the sub-spaces can be done con-
currently. This is because the sequential clustering of the sub-
spaces will not be able to utilize the multiprocessor architecture
found commonly in many hardware setups. Concurrency can
be achieved by processing the data as streams using the concept
proposed in [4]. The downside of the method is the multiple big
data technologies that need to be integrated to achieve the con-
currency. Notably, the authors have proposed Apache Hadoop,
Apache Spark and Hive and the core big data tools to be used
to process the streams. These tools have its advantages in being
very scalable. However, this technological stack could quickly
become unwieldy to maintain as more features are added into
the system. One possible way to mitigate this is to use a cloud-
hosted variation of this tech stack which is provided by cloud
hosting provider which also comes with a need to have a deep
understanding on the cloud-hosted variant of these tools. A
point must be taken note that spinning a cluster of Apache Ha-
doop, Apache Spark and Hive will also incur an additional cost
which the system administrator needs to manage carefully.
The authors of [10] have proposed to use semi-supervised net-
work anomaly detection system which can increase the perfor-
mance of the system. The increase in performance is given by
the fact that a decision tree is constructed beforehand by clus-
tering the network traffic data. Then, anomalies in incoming
network traffic is identified by evaluating the network traffic
with the decision tree constructed. A similar approach has also
been proposed in [15] whereby a rule engine is trained, and
classification of network traffic as anomalous or otherwise is
done using the rule engine. Both these methods increase the
complexity of the system because it involved two different data
mining approaches to enable the system to detect anomalies re-
liably. The need to devise a model to identify anomalies also
raises the question whether these methods can accommodate to
novel attacks quickly. The data set used in the researches are
also not the standard data set that has real-time network traffic
properties encapsulated such as MAWILab data set. In [10],
only a subset of KDD99 dataset was used in the evaluation and
in [15], the data set used is not identified clearly and only stated

vaguely as a real-life web server data. Hence, it yields the ques-
tion whether the results will be reproducible if a larger and a
widely available data set is used. Similar impediments is found
in validating the result obtained in [13] and [14] where the per-
formance results were not clearly reported.
Regarding accuracy, the authors of [16] did not state specifically
which type of anomalies was being targeted in their accuracy
evaluation which yields the ROC curve reported in the related
work. Instead, a high-level description of the aggregation level
and the variable threshold used to generate the ROC curve is
described.

3 CLUSTERING ALGORITHMS
Among different types of machine learning algorithms availa-
ble, clustering algorithms are a promising solution to solve the
challenge of real-time network anomaly detection. Clustering
algorithms that use the concept of a grid, density or a combina-
tion of both have the characteristics of anomalies embedded in
the algorithm. This characteristic offers a key advantage of us-
ing these algorithms to detect network anomalies instead of
other available algorithms.
Grid-based clustering algorithms partitions objects in the data
space into different grids. The computational complexity is re-
duced through this method as the clustering algorithm, later,
does not need to cluster the individual objects. Instead, the clus-
tering algorithm uses the characteristics of the grid to do the
clustering. The widely used algorithm that belongs to the grid-
based clustering algorithm is STING (A Statistical Information
Grid Approach to Spatial Data Mining) [17] and CLIQUE (Clus-
tering In QUEst) [18]. STING introduces a method to execute
clustering without the need to traverse through individual ob-
jects by using a hierarchical statistical grid which in turn yields
a reduces computational cost and a higher chance of able to
parallelize. CLIQUE solves the problem associated with cluster-
ing called the curse of dimensionality by automatically looking
for clusters in the subspaces derived from the original data
space.
Density-based algorithms focus on grouping the objects in a
data space into connected dense regions which are made up ob-
jects placed close together. A cluster is formed when these
dense regions are found. DBSCAN [19] is a famous algorithm
used in this class of algorithm. Two key ideas used in DBSCAN
is density reachability and density connectivity of the algo-
rithm. The algorithm can detect clusters in any shapes and find
noises identified through the clustering process. These noises
work robustly in pointing to the anomalies in the data space.
The number of clusters does not need to be specified for this
algorithm which makes it very flexible for many use cases.
Grid density algorithms such as the one used in [11] use both
the concepts of the grid and density clustering to detect anom-
alies in the data fed into the algorithm. The usage of grids and
basing the clustering on the density of the points reduces the
data points that need to be processed which in turn increases
the performance of the algorithm.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 73
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

4. GO PROGRAMMING LANGUAGE

Go programming language, commonly referred as Golang,
is a programming language created at Google by Robert
Griesemer, Rob Pike and Ken Thompson [20]. It was released to
the public on November 10, 2009, as an open source program-
ming language that is statically typed compiled. Notable fea-
tures of Go are memory safety, garbage collection, structural
typing and concurrent programming is done using Hoare’s
Communication Sequential Processes (CSP) [21] style.
Often, concurrency in a multi-threaded environment has high
complexity due to the need of synchronizing access to the
memory space. This is achieved by a complex amalgamation of
concepts such as mutexes, semaphores and condition locks.
CSP circumvents all these by providing a model for high-level
linguistic capabilities in implementing concurrency support.
Goroutines are central to the concept of implementing CSP in-
spired concurrency in Go. Go runtime intelligently manages the
independently executing function, coroutines, across a set of
threads. For example, if a coroutine is blocked by another
coroutine executing a long running process such as input/out-
put (I/O) communications, the Go runtime moves this
coroutine to a different runnable thread. This concept of a man-
aged group of coroutines is known as goroutines or in its sin-
gular form as goroutine.
Goroutines are cheap because each goroutine that is created is
given a few kilobytes in a bounded stack that is resizable. The
Go run-time manages the size of the stack as per the need of the
goroutines that are being executed while keeping the CPU re-
source needed for this shrinking and expansion of the stack as
minimal as possible. As a direct result of this efficient use of
memory space and CPU resource, it is feasible to create hun-
dreds of thousands of goroutines in the same address space. If
the goroutines were created as normal operating system thread,
the number of goroutines that could be created would be far
smaller.
Listing 0.1 shows the syntax to start a goroutine. It is a simple
as calling a function or method that needs to be run concur-
rently with the go keyword. The Go runtime will manage the
complexities of creating and managing the threads to run the
goroutine.

1. go functionToExecute()

Listing 0.1. Syntax to start a goroutine

Go runtime allows multiple goroutines to access the same
memory space by providing type conduits to ensure only one
goroutine has access to a memory space at a given time. These
type conduits are known as channels. Channels can be used to
send and receive values.
Listing 0.2 shows the syntax used for communicating over
channels in the Go programming language. The direction of the
arrow indicates the data flow direction.

1. ch <- v
2. v := <- ch

Listing 0.2. Syntax for channels

Line 1 shows that value v is sent to a channel, ch. Line 2
shows value is received from channel ch and this value is as-
signed to v. The design of channels ensures that a sender is
blocked until a receiver is available to receive the value and
vice-versa. This ensures that data can be shared across
goroutines without the need for any locking mechanisms or
condition variables. However, should the programmer decide
that a sending channel should not be blocked for a limited num-
ber of values, then the programmer can use buffered channels.
Buffered channels do not block senders until the buffer is full.
On the other hand, receive operations on the buffered channel
is blocked when the buffer is empty. The simplicity offered by
these syntaxes is evident in the few numbers of lines needed to
write a reliable concurrent implementation. Go runtime han-
dles the rest of the execution details to ensure the concurrent
execution is reliable.

5. EXPERIMENT IMPLEMENTATION
In [16], the authors have used the incremental grid density clus-
tering algorithm (IGDCA) algorithm introduced in [22] in net-
work anomaly detection domain.

Algorithm 1: Subspace clustering in [16]

for 𝑖𝑖 = 1: Number of subspaces do
Execute IGDCA on subspace 𝑖𝑖
end for

Algorithm 1 shows the subspaces clustering in [16]. In this
research, the algorithm is tested in four different architectural
methods, sequential execution as per the referred work, concur-
rent execution with a thread created for every subspace clus-
tered, a worker pool communicating on a shared messaging
channel and a worker pool communicating on a unique mes-
saging channel for every thread.
The performance of the IGDCA is evaluated by executing the
algorithm sequentially and in three concurrent manners. To
avoid discrepancies in the result, two parameters which are the
minimum number of points to consider a unit as dense and the
minimum number of points to consider a group of units as a
cluster is kept constant with the value of 10 and 100 respec-
tively.
Fig. 1Error! Reference source not found. illustrates the method

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 74
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

of construction of the subspaces for IGDCA evaluation. 100
grids which equate to 100 subspaces were initialized and, in
each grid, there are 100 units with the sides being the length of
0.1. The grids used for each method’s evaluation is kept con-
stant by initializing the same random seed to generates the
number of points to be clustered.

Fig. 1. Construction of subspaces for IGDCA evaluation

With the same seed used for each method, each grid will have
the same distribution of points. To simulate the data space that
will be encountered in real-life network traffic, the distributions
among the units inside a grid is varied.
The four methods that were tested are sequential execution,
concurrent execution types which are made up of concurrent
execution with new goroutine for each grid in an iteration,
worker pool with a shared channel for results and a worker
pool with a different channel for results for each worker. In se-
quential execution, the IDGCA algorithm was run on a single
CPU. In the rest of the three methods, the IDGCA algorithm
was run concurrently across the available CPUs.
The experiments for this research are conducted with a system
equipped with Windows 7 operating system, 3.40 GHz Intel ®
Core ™ i7-3770 CPU processor and 8.00 GB RAM. The system
is entirely written in Go programming language.

6 RESULT
Each implementation is evaluated in two different ways, by
varying the number of points in a subspace and varying the
number of subspaces.

6.1 Varying number of points
Fig. 2 shows that among the four methods test, the sequential
execution exhibits the fastest execution time. The worker pool
that communicates on a shared and unique channel follow
closely. The concurrent execution which creates a new
goroutine for each subspace clustering is the slowest. A trend
that can be seen is that as the number of points increases, the
sequential execution tends to reduce in performance. In
comparison to that, the worker with shared and unique
channels exhibit an almost consistent execution time. When the
number of points used to test ranged from 1000 to 10000 points,
the worker pool with unique channels for each subspace also
shows a dip below the 0.025ms line. On the other hand, the
worker pool with a shared channel shows a graduals increase
in execution time as the number of points increases.

Fig. 2. Average execution time of four methods

The sequential execution is the fastest executing method in this
test because it does not need to create goroutines and channels
to communicate concurrently. However, as a direct conse-
quence of a lack of concurrency, the sequential execution slows
down as the number of points increases. It does not use the
available CPUs to the best of its ability. The worker pool with
shared and unique channels, on the other hand, doesn’t de-
grade much in performance when the number of points of in-
creases because these methods use all the available CPUs.
Lastly, the concurrent execution with new goroutines created
for each grid is the slowest because there is a performance hit
when a goroutine needs to be created for every subspace, and
it also needs to be garbage collected by the runtime later.

6.2 Varying number of subspaces
Fig. 3 shows that the average execution time of the worker pool
that communicates its results on a shared channel being the
lowest among the four methods. The average execution time of
the rest of the three methods was almost the same until 64 sub-
spaces. Post 64 subspaces, the sequential execution saw an ex-
ponential increase in the average execution time. The concur-
rent execution with new goroutines created for each subspace
also showed a similar increase in the average execution time.
The fastest two methods were the worker pool that communi-
cates its result on a shared channel and unique channels. The
average execution times were just slightly increased above 2ms
after 1024 subspaces.
The ability of the worker pool methods to distribute computa-
tion across multiple processors allowed these methods to be the
fastest methods among the methods tested. The use of a fixed
number of goroutines in these methods also removed the over-
head of creating new goroutines which in turn reduced the
computational cost which hit the concurrent execution where
new goroutines were created for each subspace clustered. After
64 subspaces, sequential execution slows down dramatically as
all its computation is ran on a single CPU.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 75
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Fig. 3. Average execution time of four methods

6.3 Result Analysis
The sequential execution used in this research is referred from
the algorithm implemented in [16]. Go programming lan-
guage’s profiling tool was used to find out the value of the 𝑝𝑝
parameter in the Gustafson-Barsis’ Law. The value of 𝑝𝑝 which
equals to the percentage of code that is improved to run in par-
allel is computed as ~40% using the Go profiling tool.
Fig. 4 shows that the sequential execution is the best execution
method when two criteria are present. Firstly, the number of
subspaces to be clustered is small and secondly, the number of
points in these subspaces is large. The parallel implementations
are slowed due to the performance cost imposed by the compu-
tation overhead in creating Goroutines. For example, due to this
performance hit, the concurrent implementation showed a de-
crease in performance of almost 0.2 factor when compared to
the sequential execution. The other two implementation’s per-
formance hovered in between the sequential and concurrent ex-
ecution.

In contrast, Fig. 5 shows that when the number of subspaces
increases, the worker pool methods shows a marked perfor-
mance increase compared to the other two methods. There is an
improvement of 2 times when compared to the base case of se-
quential execution as referenced from [16]. The result proves
that the parallel executions gives a solution to the challenge of
finding network anomalies as the number of subspaces in the
data space increases which is a common occurrence in network
traffic data today.

7. CONCLUSION
In this research work, the IGDCA algorithm used in [16] which
exhibits useful characteristics such as the ability to incremen-
tally update the data space and reducing the data space to be
clustered by using grid and density concepts is further
improved in performance with the introduction of paralleliza-
tion. The usage of parallelized architecture when there is an in-
crease in the number of points in the data space does not yield
significant improvements over a sequential architecture. How-
ever, when the number of subspaces to be clustered increases,
parallelized architecture shows a marked improvement in per-
formance when compared to the sequential execution. This im-
provement has great potential to be enhanced and used in net-
work anomaly detection as this could lead to a robust real-time
network anomaly detection system. In future work, the impact
of the improvements to the accuracy of the system needs to be
studied further.

7 REFERENCES

[1] A. Nordrum, “Popular internet of things forecast of 50 billion devices by
2020 is outdated,” IEEE Spectr., vol. 18, 2016.

[2] Symantec, “ISTR Internet Security Threat Report Volume 23,” 2018.
[3] I. W. Stats, “World Internet Users and 2018 Population Stats,” 2018. .
[4] K. Kato and V. Klyuev, “Development of a network intrusion detection

system using Apache Hadoop and Spark,” in 2017 IEEE Conference on
Dependable and Secure Computing, 2017, pp. 416–423.

[5] A. Hadoop, “Hadoop,” http://hadoop.apache.org, 2018. .
[6] A. Hive, “Apache Hive,” https://hive.apache.org/, 2018. .
[7] A. Spark, “Apache Spark: Lightning-fast cluster computing,”

http://spark.apache.org. .
[8] S. B. Joshi, “Apache hadoop performance-tuning methodologies and best

practices,” Proc. third Jt. WOSP/SIPEW Int. Conf. Perform. Eng. - ICPE
’12, p. 241, 2012.

[9] M. Armbrust, M. Zaharia, T. Das, A. Davidson, A. Ghodsi, A. Or, J.
Rosen, I. Stoica, P. Wendell, and R. Xin, “Scaling spark in the real
world,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1840–1843, 2015.

[10] Z. Cataltepe, U. Ekmekci, T. Cataltepe, and I. Kelebek, “Online feature
selected semi-supervised decision trees for network intrusion detection,”
in Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network Operations
and Management Symposium, 2016, pp. 1085–1088.

[11] C. C. Aggarwal, T. J. Watson, R. Ctr, J. Han, J. Wang, and P. S. Yu, “A
Framework for Clustering Evolving Data Streams,” Proc. 29th int. conf.

Fig. 4. Evaluating system performance under total point in a
subspace being between 1000 to 10,000 using Gustafson-Barsis'

Law

Fig. 5. Evaluating system performance under 1024 subspaces
using Gustafson-Barsis' Law

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 76
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Very large data bases, pp. 81–92, 2003.
[12] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis

of the KDD CUP 99 data set,” in Computational Intelligence for Security
and Defense Applications, 2009. CISDA 2009. IEEE Symposium on,
2009, pp. 1–6.

[13] P. V. Amoli and T. Hämäläinen, “A real time unsupervised NIDS for
detecting unknown and encrypted network attacks in high speed
network,” in Proceedings - M and N 2013: 2013 IEEE International
Workshop on Measurements and Networking, 2013, pp. 149–154.

[14] P. Vahdani Amoli, “Unsupervised network intrusion detection systems for
zero-day fast-spreading network attacks and botnets,” Jyväskylä Stud.
Comput., vol. 10, no. 231, pp. 1–13, 2015.

[15] A. Juvonen and T. Sipola, “Combining conjunctive rule extraction with
diffusion maps for network intrusion detection,” in Proceedings -
International Symposium on Computers and Communications, 2013, pp.
411–416.

[16] J. Dromard, G. Roudière, and P. Owezarski, “Online and Scalable
Unsupervised Network Anomaly Detection Method,” IEEE Trans. Netw.
Serv. Manag., vol. 14, no. 1, pp. 34–47, 2017.

[17] W. Wang, J. Yang, and R. Muntz, “STING : A Statistical Information Grid
Approach to Spatial Data Mining,” 23rd VLDB Conf. Athens, pp. 186–
195, 1997.

[18] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic
subspace clustering of high dimensional data for data mining
applications,” ACM SIGMOD Rec., vol. 27, no. 2, pp. 94–105, 1998.

[19] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” Proc. 2nd Int. Conf. Knowl. Discov. Data Min., pp. 226–231,
1996.

[20] G. Team, “Frequently Asked Questions (FAQ) - The Go Programming
Language,” 2009. [Online]. Available: https://golang.org/doc/faq.
[Accessed: 02-Jun-2018].

[21] C. A. R. Hoare, “Communicating Sequential Processes.”
[22] Ã. C. Ning, C. An, and Z. Long-Xiang, “An Incremental Grid Density-

Based Clustering Algorithm,” vol. 1313, no. 101, pp. 1–7, 2002.
 IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	3 Clustering Algorithms
	4. Go Programming Language
	5. Experiment Implementation
	6 Result
	6.1 Varying number of points
	6.2 Varying number of subspaces
	6.3 Result Analysis

	7. Conclusion
	7 References

