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Abstract— Cyberattacks are a growing threat to the internet. These cyberattacks are targeted to exploit the vulnerabilities in a network. 
Often, the intention of such cyberattacks is malicious. The growing number of devices that are connected to the Internet also increases the 
vulnerability of such devices to cyberattacks. Cyberattacks will usually exhibit anomalous characteristics in a network traffic flow. These 
anomalies could be identified in real-time and investigated further to minimize the impact of cyberattacks. Many researchers today use a 
wide array of tools to detect cyberattacks in real-time which comes with a high complexity cost in terms of the system architecture and 
maintenance. In this research, a simple method of parallelizing the incremental grid density clustering algorithm used to detect the anomalies 
is implemented and studied. The simplified approach used in this research is practical to be used in a real-life environment. 

Index Terms— clustering, cybersecurity, machine learning, network anomaly detection, real-time  
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1 INTRODUCTION                                                                     
N today's world, devices are being connected to large net-
works at an accelerating pace. By 2021, it is expected that 28 
billion devices will be connected to the network, predomi-

nantly, the Internet [1].  
A report produces by Symantec Security says that malware is 
being prompted in approximately 8 percent of gadgets con-
nected to the Internet [2]. Also, a huge jump of 54 percent in the 
variety of malware targeting mobile gadgets with an almost 
equal increase of 46 percent in the type of ransomware are being 
widely seen today. The explosive growth of devices connected 
to the Internet in developing regions such as Africa and Asia 
where the growth of the number of such devices has been 
recorded as 9941 percent, and 1670 percent from 2000 to 2018 
respectively [3] shows the huge potential for vulnerability ex-
posed to malicious cybercriminals.  
Hence, implementing a system capable of detecting network in-
trusion in real-time which is easily deployable and scalable is 
an important challenge to be solved as non-real time network 
intrusion detection reduces the possibility of taking security 
measures to defend a system promptly and has a lower chance 
of detecting novel attacks. In this research, upon studying, a 
crucial part of the network intrusion detection system which is 
the network anomaly detection module is enhanced. The en-
hancement is focused on improving the performance of the 
clustering algorithm used to detect anomalies. 
This paper is divided into six main sections, a discussion on re-
lated works, a brief overview of clustering algorithms, a brief 
discussion on the Go programming language focusing on it’s 
concurrency features, the implementation of the experiment, a 

discussion on the results obtained and finally, conclusions and 
future direction to continue to work done in this research. 

2 RELATED WORK 
The authors of [4] have proposed to use Apache Hadoop [5], 
Hive [6] and Apache Spark [7] to process the network flow data 
in real-time. Apache Hadoop is used to store the network pack-
ets in a Hive table that is accessible by Apache Spark for real-
time processing of the features. The implementation of the re-
searchers can process a large amount of network flow data to 
detect anomalies in a short span of time as the computation was 
distributed among a cluster of Spark processes. On the flip side, 
fine-tuning configuration settings for Hadoop is highly chal-
lenging [8]. Apache Spark also comes with own set of chal-
lenges when especially on the ease of debugging [9]. 
In  [10], the authors have used a combination of the CluStream 
[11] clustering algorithm and a decision tree to detect anoma-
lies. CluStream is used to cluster the training data into anomaly 
or non-anomaly. Then, the clusters formed are used to create a 
decision tree. The features of the data that streams into the sys-
tem is reduced by using an online feature selection method 
which in turns reduces the time to detect the anomalies. The 
system also has a high precision rate. However, the data set 
used, KDD99, is known for its limitation regarding a high num-
ber of redundant and different level of difficulties in the distri-
bution of the dataset [12]. Besides, the authors have not tested 
the system using the whole KDD99 dataset.  
Besides that, in [13], the authors has proposed a multi-stage 
anomaly detection system. The system is divided into two en-
gines. Whenever the first engine detects a DDOS attack, the sec-
ond engine proceeds to find the potential Bot-Master. Dividing 
the processing of detection using in a multi-stage process de-
creases the computation resource needed. The ensuing work 
[14] from this research paper though did not state the computa-
tional performance of the system in detail. 
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A two-stage NIDS whereby the first stage is to form a rule set 
using unsupervised learning methods and the second stage of 
classifying network traffic in an online manner using the rule 
set forms is done in [15]. The first stage of form rules uses k-
means clustering. The proposed method has its advantage as it 
eliminates the need to have a labeled training dataset. The 
downside of this method is that the rule set needs to be re-
formed to detect novel attacks. 
Focusing on the perspective of performance of the proposed 
system, the approach suggested in [16] to identify anomalies by 
clustering over sub-spaces using an incremental grid clustering 
algorithm is well suited to a real-time setting as the algorithm 
can include streaming network traffic to update the clusters. 
The use of sub-spaces also further decrements the size of the 
feature space that needs to be clustered. However, clustering 
over the sub-spaces is done in a sequential manner whereby a 
loop is running to cluster each of the sub-spaces. The result of 
clustering all the sub-spaces is then accumulated to identify 
anomalies. To improve the performance of the clustering, the 
process of clustering over all the sub-spaces can be done con-
currently. This is because the sequential clustering of the sub-
spaces will not be able to utilize the multiprocessor architecture 
found commonly in many hardware setups. Concurrency can 
be achieved by processing the data as streams using the concept 
proposed in [4]. The downside of the method is the multiple big 
data technologies that need to be integrated to achieve the con-
currency. Notably, the authors have proposed Apache Hadoop, 
Apache Spark and Hive and the core big data tools to be used 
to process the streams. These tools have its advantages in being 
very scalable. However, this technological stack could quickly 
become unwieldy to maintain as more features are added into 
the system. One possible way to mitigate this is to use a cloud-
hosted variation of this tech stack which is provided by cloud 
hosting provider which also comes with a need to have a deep 
understanding on the cloud-hosted variant of these tools. A 
point must be taken note that spinning a cluster of Apache Ha-
doop, Apache Spark and Hive will also incur an additional cost 
which the system administrator needs to manage carefully. 
The authors of [10] have proposed to use semi-supervised net-
work anomaly detection system which can increase the perfor-
mance of the system. The increase in performance is given by 
the fact that a decision tree is constructed beforehand by clus-
tering the network traffic data. Then, anomalies in incoming 
network traffic is identified by evaluating the network traffic 
with the decision tree constructed. A similar approach has also 
been proposed in [15] whereby a rule engine is trained, and 
classification of network traffic as anomalous or otherwise is 
done using the rule engine. Both these methods increase the 
complexity of the system because it involved two different data 
mining approaches to enable the system to detect anomalies re-
liably. The need to devise a model to identify anomalies also 
raises the question whether these methods can accommodate to 
novel attacks quickly. The data set used in the researches are 
also not the standard data set that has real-time network traffic 
properties encapsulated such as MAWILab data set. In [10], 
only a subset of KDD99 dataset was used in the evaluation and 
in [15], the data set used is not identified clearly and only stated 

vaguely as a real-life web server data. Hence, it yields the ques-
tion whether the results will be reproducible if a larger and a 
widely available data set is used. Similar impediments is found 
in validating the result obtained in [13] and [14] where the per-
formance results were not clearly reported. 
Regarding accuracy, the authors of [16] did not state specifically 
which type of anomalies was being targeted in their accuracy 
evaluation which yields the ROC curve reported in the related 
work. Instead, a high-level description of the aggregation level 
and the variable threshold used to generate the ROC curve is 
described. 

3 CLUSTERING ALGORITHMS 
Among different types of machine learning algorithms availa-
ble, clustering algorithms are a promising solution to solve the 
challenge of real-time network anomaly detection. Clustering 
algorithms that use the concept of a grid, density or a combina-
tion of both have the characteristics of anomalies embedded in 
the algorithm. This characteristic offers a key advantage of us-
ing these algorithms to detect network anomalies instead of 
other available algorithms. 
Grid-based clustering algorithms partitions objects in the data 
space into different grids. The computational complexity is re-
duced through this method as the clustering algorithm, later, 
does not need to cluster the individual objects. Instead, the clus-
tering algorithm uses the characteristics of the grid to do the 
clustering. The widely used algorithm that belongs to the grid-
based clustering algorithm is STING (A Statistical Information 
Grid Approach to Spatial Data Mining) [17] and CLIQUE (Clus-
tering In QUEst) [18]. STING introduces a method to execute 
clustering without the need to traverse through individual ob-
jects by using a hierarchical statistical grid which in turn yields 
a reduces computational cost and a higher chance of able to 
parallelize. CLIQUE solves the problem associated with cluster-
ing called the curse of dimensionality by automatically looking 
for clusters in the subspaces derived from the original data 
space. 
Density-based algorithms focus on grouping the objects in a 
data space into connected dense regions which are made up ob-
jects placed close together. A cluster is formed when these 
dense regions are found. DBSCAN [19] is a famous algorithm 
used in this class of algorithm. Two key ideas used in DBSCAN 
is density reachability and density connectivity of the algo-
rithm. The algorithm can detect clusters in any shapes and find 
noises identified through the clustering process. These noises 
work robustly in pointing to the anomalies in the data space. 
The number of clusters does not need to be specified for this 
algorithm which makes it very flexible for many use cases. 
Grid density algorithms such as the one used in [11] use both 
the concepts of the grid and density clustering to detect anom-
alies in the data fed into the algorithm. The usage of grids and 
basing the clustering on the density of the points reduces the 
data points that need to be processed which in turn increases 
the performance of the algorithm. 
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4. GO PROGRAMMING LANGUAGE 
 

Go programming language, commonly referred as Golang, 
is a programming language created at Google by Robert 
Griesemer, Rob Pike and Ken Thompson [20]. It was released to 
the public on November 10, 2009, as an open source program-
ming language that is statically typed compiled. Notable fea-
tures of Go are memory safety, garbage collection, structural 
typing and concurrent programming is done using Hoare’s 
Communication Sequential Processes (CSP) [21] style. 
Often, concurrency in a multi-threaded environment has high 
complexity due to the need of synchronizing access to the 
memory space. This is achieved by a complex amalgamation of 
concepts such as mutexes, semaphores and condition locks. 
CSP circumvents all these by providing a model for high-level 
linguistic capabilities in implementing concurrency support. 
Goroutines are central to the concept of implementing CSP in-
spired concurrency in Go. Go runtime intelligently manages the 
independently executing function, coroutines, across a set of 
threads. For example, if a coroutine is blocked by another 
coroutine executing a long running process such as input/out-
put (I/O) communications, the Go runtime moves this 
coroutine to a different runnable thread. This concept of a man-
aged group of coroutines is known as goroutines or in its sin-
gular form as goroutine. 
Goroutines are cheap because each goroutine that is created is 
given a few kilobytes in a bounded stack that is resizable. The 
Go run-time manages the size of the stack as per the need of the 
goroutines that are being executed while keeping the CPU re-
source needed for this shrinking and expansion of the stack as 
minimal as possible. As a direct result of this efficient use of 
memory space and CPU resource, it is feasible to create hun-
dreds of thousands of goroutines in the same address space. If 
the goroutines were created as normal operating system thread, 
the number of goroutines that could be created would be far 
smaller. 
Listing 0.1 shows the syntax to start a goroutine. It is a simple 
as calling a function or method that needs to be run concur-
rently with the go keyword. The Go runtime will manage the 
complexities of creating and managing the threads to run the 
goroutine. 

 
1. go functionToExecute() 

Listing 0.1. Syntax to start a goroutine 

 
Go runtime allows multiple goroutines to access the same 
memory space by providing type conduits to ensure only one 
goroutine has access to a memory space at a given time. These 
type conduits are known as channels. Channels can be used to 
send and receive values. 
Listing 0.2 shows the syntax used for communicating over 
channels in the Go programming language. The direction of the 
arrow indicates the data flow direction. 

 
1. ch <-  v 
2. v := <- ch  

Listing 0.2. Syntax for channels 
 

Line 1 shows that value v is sent to a channel, ch. Line 2 
shows value is received from channel ch and this value is as-
signed to v. The design of channels ensures that a sender is 
blocked until a receiver is available to receive the value and 
vice-versa. This ensures that data can be shared across 
goroutines without the need for any locking mechanisms or 
condition variables. However, should the programmer decide 
that a sending channel should not be blocked for a limited num-
ber of values, then the programmer can use buffered channels. 
Buffered channels do not block senders until the buffer is full. 
On the other hand, receive operations on the buffered channel 
is blocked when the buffer is empty. The simplicity offered by 
these syntaxes is evident in the few numbers of lines needed to 
write a reliable concurrent implementation. Go runtime han-
dles the rest of the execution details to ensure the concurrent 
execution is reliable. 

5. EXPERIMENT IMPLEMENTATION 
In [16], the authors have used the incremental grid density clus-
tering algorithm (IGDCA) algorithm introduced in [22] in net-
work anomaly detection domain.  

 
 

Algorithm 1: Subspace clustering in [16]
 

for 𝑖𝑖 = 1: Number of subspaces do 
Execute IGDCA on subspace 𝑖𝑖 
end for

 
Algorithm 1 shows the subspaces clustering in [16]. In this 
research, the algorithm is tested in four different architectural 
methods, sequential execution as per the referred work, concur-
rent execution with a thread created for every subspace clus-
tered, a worker pool communicating on a shared messaging 
channel and a worker pool communicating on a unique mes-
saging channel for every thread. 
The performance of the IGDCA is evaluated by executing the 
algorithm sequentially and in three concurrent manners. To 
avoid discrepancies in the result, two parameters which are the 
minimum number of points to consider a unit as dense and the 
minimum number of points to consider a group of units as a 
cluster is kept constant with the value of 10 and 100 respec-
tively.  
Fig. 1Error! Reference source not found. illustrates the method 
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of construction of the subspaces for IGDCA evaluation. 100 
grids which equate to 100 subspaces were initialized and, in 
each grid, there are 100 units with the sides being the length of 
0.1. The grids used for each method’s evaluation is kept con-
stant by initializing the same random seed to generates the 
number of points to be clustered. 

Fig. 1. Construction of subspaces for IGDCA evaluation 

With the same seed used for each method, each grid will have 
the same distribution of points. To simulate the data space that 
will be encountered in real-life network traffic, the distributions 
among the units inside a grid is varied. 
The four methods that were tested are sequential execution, 
concurrent execution types which are made up of concurrent 
execution with new goroutine for each grid in an iteration, 
worker pool with a shared channel for results and a worker 
pool with a different channel for results for each worker. In se-
quential execution, the IDGCA algorithm was run on a single 
CPU. In the rest of the three methods, the IDGCA algorithm 
was run concurrently across the available CPUs. 
The experiments for this research are conducted with a system 
equipped with Windows 7 operating system, 3.40 GHz Intel ® 
Core ™ i7-3770 CPU processor and 8.00 GB RAM. The system 
is entirely written in Go programming language. 

6 RESULT 
Each implementation is evaluated in two different ways, by 
varying the number of points in a subspace and varying the 
number of subspaces. 

 

6.1 Varying number of points 
Fig. 2 shows that among the four methods test, the sequential 
execution exhibits the fastest execution time. The worker pool 
that communicates on a shared and unique channel follow 
closely. The concurrent execution which creates a new 
goroutine for each subspace clustering is the slowest. A trend 
that can be seen is that as the number of points increases, the 
sequential execution tends to reduce in performance. In 
comparison to that, the worker with shared and unique 
channels exhibit an almost consistent execution time. When the 
number of points used to test ranged from 1000 to 10000 points, 
the worker pool with unique channels for each subspace also 
shows a dip below the 0.025ms line. On the other hand, the 
worker pool with a shared channel shows a graduals increase 
in execution time as the number of points increases. 

 

Fig. 2. Average execution time of four methods 

The sequential execution is the fastest executing method in this 
test because it does not need to create goroutines and channels 
to communicate concurrently. However, as a direct conse-
quence of a lack of concurrency, the sequential execution slows 
down as the number of points increases. It does not use the 
available CPUs to the best of its ability. The worker pool with 
shared and unique channels, on the other hand, doesn’t de-
grade much in performance when the number of points of in-
creases because these methods use all the available CPUs. 
Lastly, the concurrent execution with new goroutines created 
for each grid is the slowest because there is a performance hit 
when a goroutine needs to be created for every subspace, and 
it also needs to be garbage collected by the runtime later. 

 

6.2 Varying number of subspaces 
Fig. 3 shows that the average execution time of the worker pool 
that communicates its results on a shared channel being the 
lowest among the four methods. The average execution time of 
the rest of the three methods was almost the same until 64 sub-
spaces. Post 64 subspaces, the sequential execution saw an ex-
ponential increase in the average execution time. The concur-
rent execution with new goroutines created for each subspace 
also showed a similar increase in the average execution time. 
The fastest two methods were the worker pool that communi-
cates its result on a shared channel and unique channels. The 
average execution times were just slightly increased above 2ms 
after 1024 subspaces. 
The ability of the worker pool methods to distribute computa-
tion across multiple processors allowed these methods to be the 
fastest methods among the methods tested. The use of a fixed 
number of goroutines in these methods also removed the over-
head of creating new goroutines which in turn reduced the 
computational cost which hit the concurrent execution where 
new goroutines were created for each subspace clustered. After 
64 subspaces, sequential execution slows down dramatically as 
all its computation is ran on a single CPU. 
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Fig. 3. Average execution time of four methods 

6.3 Result Analysis 
The sequential execution used in this research is referred from 
the algorithm implemented in [16]. Go programming lan-
guage’s profiling tool was used to find out the value of the 𝑝𝑝 
parameter in the Gustafson-Barsis’ Law. The value of 𝑝𝑝 which 
equals to the percentage of code that is improved to run in par-
allel is computed as ~40% using the Go profiling tool. 
Fig. 4 shows that the sequential execution is the best execution 
method when two criteria are present. Firstly, the number of 
subspaces to be clustered is small and secondly, the number of 
points in these subspaces is large. The parallel implementations 
are slowed due to the performance cost imposed by the compu-
tation overhead in creating Goroutines. For example, due to this 
performance hit, the concurrent implementation showed a de-
crease in performance of almost 0.2 factor when compared to 
the sequential execution. The other two implementation’s per-
formance hovered in between the sequential and concurrent ex-
ecution. 

In contrast, Fig. 5 shows that when the number of subspaces 
increases, the worker pool methods shows a marked perfor-
mance increase compared to the other two methods. There is an 
improvement of 2 times when compared to the base case of se-
quential execution as referenced from [16]. The result proves 
that the parallel executions gives a solution to the challenge of 
finding network anomalies as the number of subspaces in the 
data space increases which is a common occurrence in network 
traffic data today. 

 

 

7. CONCLUSION 
In this research work, the IGDCA algorithm used in [16] which 
exhibits useful characteristics such as the ability to incremen-
tally update the data space and reducing the data space to be 
clustered by using grid and density concepts is further 
improved in performance with the introduction of paralleliza-
tion. The usage of parallelized architecture when there is an in-
crease in the number of points in the data space does not yield 
significant improvements over a sequential architecture. How-
ever, when the number of subspaces to be clustered increases, 
parallelized architecture shows a marked improvement in per-
formance when compared to the sequential execution. This im-
provement has great potential to be enhanced and used in net-
work anomaly detection as this could lead to a robust real-time 
network anomaly detection system. In future work, the impact 
of the improvements to the accuracy of the system needs to be 
studied further. 
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